За последние годы рекламные площадки сильно улучшили алгоритмы автоматических стратегий. Они начали предлагать оптимизацию по стоимости за заказ, по целевой рентабельности инвестиций и даже по доле рекламных расходов. А маркетплейсы, которые активно захватывают рынок, вообще предлагают платить за выкупленный заказ.
В случае с контекстными рекламными площадками, в отличии от маркетплейса, все равно есть сложность — доход от продажи одной товарной единицы может сильно варьироваться. В e-commerce в качестве конверсий для оптимизации обычно используют один из трех вариантов:
- данные электронной торговли вместе с лидами с сайта;
- в более продвинутых случаях — оффлайн-данные из Google Measurement Protocol, а в случае Яндекс.Метрики — загрузку оффлайн-конверсий или сквозную аналитику, которая недавно появилась в сервисе;
- если речь не про e-commerce, то все сводится к подсчету звонков и целей, что еще печальнее.
Те, кто готов немного раскошелиться за более точный учет ради высокого результата, подключают готовые решения для сквозной аналитики вроде Roistat, Calltouch, Comagic и др. Их возможности намного шире:
- можно видеть статистику по конверсиям в одном окне: как со звонков, так и с элементов взаимодействия на сайте;
- несложно интегрировать с CRM (для популярных систем) для передачи сделок;
- если интеграция с CRM сделана должным образом, возможно видеть прибыль от рекламных кампаний.
Задача — оптимизация по марже
Digital-агентство MediaGuru недавно начало сотрудничать с интернет-магазином смартфонов и гаджетов Wishmaster. Для его продвижения мы запустили умную торговую кампанию Google Ads. Но стандартные варианты оптимизации не подходили.
Система ценообразования клиента очень лояльна к покупателям, но усложняет оптимизацию РК. Политика такая, что наценка не зависит от цены товара. Аппарат стоимостью 100 тыс. рублей может принести прибыль 500 рублей, а гаджет за 15 тыс. рублей даст профит в 2 тыс. рублей. При такой системе работа по целевой цене за конверсию сводится к крайне неудобному формату подбивания CPO под каждый товар. А подгонять под ROI еще проблематичнее.
На этапе переговоров с клиентом решили, что будем подключать Roistat и переведем рекламные кампании на оптимизацию по фактически получаемой марже.
Подготовительный этап
Коллеги из Wishmaster оперативно настроили передачу в Roistat себестоимости и статусов заказов. Теперь мы видели маржу. Дальше внедрили коллтрекинг, что окончательно дополнило картину.
До подключения коллтрекинга мы подготовили набор скриптов, который позволяет получать данные из Roistat и передавать их сразу в Google Ads. Упущение сервисов сквозной аналитики — в основном они сосредоточены на том, чтобы агрегировать статистику. Нет набора коннекторов для передачи данных на площадки или в бесплатные системы аналитики. На общем фоне чуть выделятся CallTouch, но и там есть не все нужные инструменты.
Передача данных из Roistat
Перейдем к наиболее интересному — к механике передачи данных. У Roistat есть свой API. При помощи простой функции на языке Python легко получить данные по лидам, сделкам и визитам.
Дальше из полученного датасета нужно извлечь все необходимое, отфильтровать по статусам и готово.
Есть нюанс! Через API Roistat не получить Google Click ID (gclid), чтобы успешно загрузить конверсии в Ads. Но Roistat собирает ClientID Яндекс.Метрики и Google Analytics.
Как загрузить конверсии из Roistat в Ads?
Есть как минимум два варианта, как выйти из ситуации.
- Вариант 1. Передать данные из Roistat в Google Analytics, связать аккаунты и импортировать конверсии.
- Вариант 2. Использовать Logs API Метрики, который позволяет получить gclid.
Мы воспользовались вторым вариантом. Немного остановимся на том, почему не выбрали первый.
- Реатрибуция. Google Analytics будет реатрибуцировать конверсии. Из-за этого конечный результат будет расходиться с Roistat, к которому мы привязались изначально.
- Потеря конверсий. В связи с п.1 могут происходить потери при импорте. Причин может быть несколько. Основная — конверсия импортируется в Google Ads только в том случае, если в Google Analytics будет отнесена к источнику Google Ads по атрибуции последний непрямой.
- Привязка конверсии к времени визита. В случае импорта дата конверсии будет привязана к моменту ее передачи, а не к клику по рекламе. Поскольку статусы передаются с задержкой, фактически конверсия в Ads может быть отнесена к другому дню. Это повлияет на интерпретацию ROI в аккаунте.
Финальный этап
Данные о заказах из Roistat в предобработнном виде мы загружаем в BigQuery. Туда же идет экспорт из Logs API Метрики. В облаке мы сопоставляем по clientID заказ с gclid визита. После сопоставления достаточно импортировать данные в Google Sheets, подключить таблицу к аккаунту Ads и настроить регулярное обновление всей цепочки. Данные начнут в автоматическом режиме попадать в аккаунт.
Концептуально схема выглядит так:
Схема передачи данных из Roistat в Google Ads
Roistat в данном случае — это донор данных. Метрика — цемент, который позволяет увязать их между собой, а Ads — реципиент.
Казалось бы, где Roistat, Метрика и Google Ads. Но при желании и некотором умении все объединяется в рабочую схему. Конечно, она не универсальна. Мы исходили из требований задачи. А нужно было построить работоспособный вариант с предсказуемым и легко интерпретируемым результатом.
Результаты
А для чего все было сделано? Торговая кампания оптимизируется по марже несколько недель. Ниже временной ряд из Ads «Ценность конверсии/Стоимость» с 1 по 31 июля. Первые две недели проходило обучение стратегии с наслоением конверсий, которые зарегистрированы в Google Ads до и после переключения конверсии в аккаунте.
Вторая часть графика — более «чистые» данные уже с минимальным влиянием старых конверсий в оптимизации. Средний показатель Ads «Ценность конверсии/Стоимость» около 2, т.е. кампания стала приносить примерно в 2 раза больше, чем тратит (без НДС).
Дальше мы запланировали оптимизировать товарную матрицу, чтобы «разогреть» кампании и увеличить продажи.
Выводы
Работа умной торговой кампании с оптимизацией на прибыль показывает неплохие результаты. У нее есть потенциал. Маркетологу довольно легко интерпретировать результат ее работы, чтобы вносить корректировки без подсчета средней температуры по больнице, а опираясь на конкретный результат.
Отсюда вывод — для достижения цели не нужно ограничиваться типовыми решениями. Учитесь смотреть шире, чтобы добиться результата максимально быстро и качественно.